

Si-H and Si-C Bond Cleavage Reactions of Silane and Phenylsilanes with Mo(PMe₃)₆: Silyl, Hypervalent Silyl, Silane, and Disilane Complexes

Ashley A. Zuzek and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027, United States

S Supporting Information

ABSTRACT: $Mo(PMe_3)_6$ cleaves the Si-H bonds of SiH₄, PhSiH₃, and Ph₂SiH₂ to afford a variety of novel silyl, hypervalent silyl, silane, and disilane complexes, as respectively illustrated by Mo(PMe₃)₄(SiH₃)₂H₂, Mo- $(PMe_3)_4(\kappa^2-H_2-H_2SiPh_2H)H$, Mo $(PMe_3)_3(\sigma-HSiHPh_2)$ - H_{41} and Mo(PMe₃)₃(κ^2 - H_2 - H_2 Si₂Ph₄)H₂. Mo(PMe₃)₄(κ^2 - H_2 -H₂SiPh₂H)H and Mo(PMe₃)₃(κ^2 -H₂-H₂Si₂Ph₄)H₂ are respectively the first examples of complexes that feature a hypervalent κ^2 -H₂-H₂SiPh₂H silyl ligand and a chelating disilane ligand, and both compounds convert to the diphenylsilane adduct, Mo(PMe₃)₃(σ -HSiHPh₂)H₄, in the presence of H₂. Mo(PMe₃)₄(SiH₃)₂H₂ undergoes isotope exchange with SiD₄, and NMR spectroscopic analysis of the SiH_xD_{4-x} isotopologues released indicates that the reaction does not occur via initial reductive elimination of SiH₄, but rather by a metathesis pathway.

he interaction of Si-H bonds with transition metal compounds is of fundamental interest,¹ not only because it is a key step in hydrosilylation, dehydrogenative Si-H/O-H coupling, and dehydrogenative polymerization of silanes,² but also because it provides a model for the corresponding interactions of C-H bonds with metal centers.^{3,4} By comparison to substituted silanes, however, the reactivity of SiH₄ towards transition metal compounds has received relatively little attention.^{3,4a,5} Therefore, we report here the first example of the oxidative addition of 2 equiv of SiH₄ to a molybdenum center and also describe the corresponding reactivity of the series of phenylsilanes, Ph_xSiH_{4-x} (x = 1-4), which affords silyl, hypervalent silyl, silane, and disilane complexes.

Previous studies have shown that zerovalent $Mo(PMe_3)_6$ is a highly reactive molecule that is subject to oxidative addition reactions with, for example, H-H, C-H, O-H, and C-S bonds.^{6,7} Significantly, we now demonstrate that $Mo(PMe_3)_6$ also cleaves the Si-H bond of SiH4 at room temperature to give the bis(silyl) compound $Mo(PMe_3)_4(SiH_3)_2H_2$ (1) (Scheme 1). This transformation is of particular note because related zerovalent molybdenum complexes, namely Mo- $(R_2PC_2H_4PR_2)_2(CO)$ (R = Ph, Bu'), do not cleave the Si-H bond of SiH₄, but rather coordinate it to form σ -silane adducts, $Mo(R_2PC_2H_4PR_2)_2(CO)(\sigma-SiH_4)$.³ $Mo(Et_2PC_2H_4PEt_2)_2(CO)$ reacts similarly to $Mo(R_2PC_2H_4PR_2)_2(CO)$ (R = Ph, Buⁱ), although the silane adduct was shown to exist in equilibrium with the silvl-hydride complex $Mo(Et_2PC_2H_4PEt_2)_2(CO)$ -

Scheme 1

 $(SiH_3)H^3$. In this regard, evidence that $Mo(PMe_3)_4(SiH_3)_2H_3$ is a silyl-hydride and not a silane complex is provided by the observation of distinct quintet signals in the ¹H NMR spectrum at δ -4.80 and 4.02 in a 1:3 ratio, of which the former has a value of ${}^{2}J_{P-H} = 26$ Hz and the latter ${}^{3}J_{P-H} = 8$ Hz. In accord with the silyl-hydride assignment, the signal attributable to the SiH₃ groups exhibits coupling to silicon $({}^{1}J_{Si-H} = 157 \text{ Hz})$, whereas no coupling is observed (i.e., ${}^{2}J_{\text{Si-H}} < 15 \text{ Hz}$) for the hydride signal.

In addition to the bis(silyl) complex, the mono(silyl) counterpart, $Mo(PMe_3)_4(SiH_3)H_3$ (2), has been obtained by both (i) reaction of the dihydride Mo(PMe₃)₅H₂ with SiH₄ and (ii) addition of H_2 to $Mo(PMe_3)_4(SiH_3)_2H_2$ (Scheme 1). The latter reaction is reversible, such that treatment of the mono(silyl) complex with SiH₄ regenerates the bis(silyl) compound, Mo(PMe₃)₄(SiH₃)₂H₂ (Scheme 1).⁸ The molecular structures of Mo(PMe₃)₄(SiH₃)H₃ and Mo(PMe₃)₄(SiH₃)₂H₂ have been determined by X-ray diffraction, as illustrated for the latter in Figure 1a.

While a simple mechanism for formation of Mo(PMe₃)₄- $(SiH_3)H_3$ upon treatment of Mo $(PMe_3)_4(SiH_3)_2H_2$ with H₂ could involve reductive elimination of SiH₄ followed by oxidative addition of H₂, isotope labeling studies indicate that such a mechanism, which is commonly invoked for non-d⁰

Published: May 30, 2014

Received: April 4, 2014

Figure 1. Molecular structures of (a) $Mo(PMe_3)_4(SiH_3)_2H_2$, (b) $Mo(PMe_3)_4(\kappa^2-H_2-H_2SiPh_2H)H$, (c) $Mo(PMe_3)_3(\kappa^2-H_2-H_2Si_2Ph_4)H_2$, and (d) $Mo(PMe_3)_3(\sigma$ -HSiHPh₂)H₄.

metal phosphine hydride compounds, does not operate. For example, treatment of $Mo(PMe_3)_4(SiH_3)_2H_2$ with D_2 results primarily in the formation of SiH_xD_{4-x} rather than SiH_4 . Furthermore, treatment of $Mo(PMe_3)_4(SiH_3)_2H_2$ with SiD_4 demonstrates that H/D exchange involving both the silyl and hydride ligands occurs *without* reductive elimination of SiH_4 (Scheme 2). Specifically, ¹H NMR spectroscopic analysis reveals that SiHD₃, and *not* SiH₄, is the initially formed isotopologue. SiH₂D₂ and SiH₃D are also observed as the exchange reaction progresses, but negligible quantities of SiH₄

Scheme 2

are formed during the course of the experiment. The absence of SiH₄ provides conclusive evidence that Mo(PMe₃)₄(SiH₃)₂H₂ does not undergo reductive elimination of the silyl and hydride ligands, and thus this transformation cannot be the first step in the reaction of Mo(PMe₃)₄(SiH₃)₂H₂ with H₂.⁹ A plausible mechanism for the exchange is, therefore, proposed to involve metathesis between the Mo–H and D–SiD₃ bonds (possibly accompanied by reversible dissociation of PMe₃), which would form initially Mo(PMe₃)₄(SiH₃)₂HD and SiHD₃ (Scheme 2).¹⁰ Subsequent incorporation of deuterium into the molybdenum silyl groups can be rationalized on the basis of Mo(PMe₃)₄-(SiH₃)₂HD accessing a fluxional silane adduct, Mo(PMe₃)₄-(SiH₃)(σ -SiH₃D)H, which would allow for scrambling (Scheme 2).¹¹

Further evidence that Si–H reductive elimination does not operate is provided by examination of the corresponding exchange reaction between $Mo(PMe_3)_4(SiD_3)_2D_2$ and SiH_4 . Specifically, ¹H NMR spectroscopic analysis reveals the initial formation of Mo–SiHD₂ groups rather than Mo–SiH₃ groups, with the latter being generated as the reaction progresses. Furthermore, the silane isotopologue that is released is primarily SiH₃D, which is consistent with a mechanism that involves metathesis of the Mo–D bond with the H–SiH₃ bond.

 $Mo(PMe_3)_6$ also undergoes facile oxidative addition of Si-H bonds of PhSiH₃ at room temperature to give the bis-(phenylsilyl) compound, $Mo(PMe_3)_4(SiH_2Ph)_2H_2$ (3), which can be isolated if the reaction mixture is immediately cooled to -15 °C (Scheme 3). However, $Mo(PMe_3)_4(SiH_2Ph)_2H_2$

exhibits limited stability at room temperature and undergoes a series of transformations in the presence of excess PhSiH₃ to form the *silyl* (SiH₃) compounds Mo(PMe₃)₄(SiH₂Ph)(SiH₃)-H₂ (4), Mo(PMe₃)₄(SiH₃)₂H₂, and Mo(PMe₃)₄(SiH₃)H₃, of which the lattermost ultimately dominates (Scheme 3). The generation of these Mo–SiH₃ compounds upon treatment with PhSiH₃ is of significance not only because it requires the cleavage of Si–C bonds, but also because there is no precedent for the isolation of a metal complex with a terminal SiH₃ ligand from the reactions of PhSiH₃.^{12,13}

Although the mechanistic details are unknown, formation of $Mo(PMe_3)_4(SiH_2Ph)(SiH_3)H_2$ from $Mo(PMe_3)_4(SiH_2Ph)_2H_2$ can be conceptually rationalized by an overall metathesis of $Mo-SiH_2Ph$ and $Ph-SiH_3$ bonds.^{14,15} In support of this suggestion, Ph_2SiH_2 is also formed during the course of the reaction. Furthermore, SiH_4 is observed, thereby making it evident that the system is capable of effecting the redistribution of $PhSiH_3$ into Ph_2SiH_2 and SiH_4 . In this regard, the catalytic redistribution of $PhSiH_3$ is well-known, although it is typically

observed for d^0 transition metals¹⁶ and lanthanides,^{12a,b,17} for which σ -bond metathesis mechanisms are generally invoked.

Interestingly, the reactivity of Ph₂SiH₂ towards Mo(PMe₃)₆ is quite distinct from that of either PhSiH₃ or SiH₄. Therefore, rather than simply cleaving the Si–H bond, the reaction of Mo(PMe₃)₆ with Ph₂SiH₂ results in the formation of, *inter alia*, Mo(PMe₃)₄(κ^2 -H₂-H₂SiPh₂H)H (**5**) and Mo(PMe₃)₃(κ^2 -H₂-H₂SiPh₄)H₂ (**6**) (Scheme 4).¹⁸ The formation of the Si–Si

bond to yield the latter compound is, however, reversible, such that the disilane complex reacts rapidly with H₂ to give the monosilane adduct, Mo(PMe₃)₃(σ -HSiHPh₂)H₄ (7) (Scheme 4). Furthermore, the latter compound is also formed upon treatment of Mo(PMe₃)₄(κ^2 -H₂-H₂SiPh₂H)H with H₂ (Scheme 4).¹⁹

The molecular structures of Mo(PMe₃)₄(κ^2 -H₂-H₂SiPh₂H)H, Mo(PMe₃)₃(κ^2 -H₂-H₂Si₂Ph₄)H₂, and Mo(PMe₃)₃(σ -HSiHPh₂)H₄ have been determined by X-ray diffraction, as illustrated in Figure 1b–d. The three-membered [Mo,H,Si] moiety of Mo(PMe₃)₃(σ -HSiHPh₂)H₄ is characterized by Mo– Si [2.500(1) Å], Mo–H [1.64(5) Å], and Si–H [1.74(4) Å] bond lengths that are in accord with its formulation as a silane adduct.^{1,20,21} For example, the Si–H bond length associated with the bridging hydrogen is within the range accepted for σ complexes (1.7–1.8 Å).^{1a}

 $Mo(PMe_3)_3(\kappa^2-H_2-H_2Si_2Ph_4)H_2$ is of particular note because it represents the first example of a structurally characterized metal disilane complex. Furthermore, the disilane chelates to the metal center, albeit in an asymmetric manner, with Mo–Si distances of 2.5322(8) and 2.7140(8) Å.

Mo(PMe₃)₄(κ^2 - H_2 -H₂SiPh₂H)H is the first example of a structurally characterized complex with a κ^2 - H_2 -H₂SiPh₂H ligand.²² Complexes with related motifs, such as [H₂SiPh₃],²³ [H₂SiPhH₂],^{24a} and [H₂SiCl₃],²⁴ have also been reported,^{25,26} and the bonding in these compounds has been discussed in terms of a variety of models, which include (*i*) silyl-dihydride, (*ii*) σ -silane-hydride, and (*iii*) symmetric hypervalent [H₂SiR₃] formalisms.^{20,25} In this regard, the Si-H [1.69(3) and 1.74(3) Å] and Mo-H [1.62(3) and 1.88(3) Å] bond lengths indicate that Mo(PMe₃)₄(κ^2 - H_2 -H₂SiPh₂H)H is better described as a

hypervalent $[H_2SiPh_2H]$ silyl derivative than as a silyl-hydride complex.²⁷

Finally, in contrast to the reactions of Mo(PMe₃)₆ with SiH₄, PhSiH₃, and Ph₂SiH₂, each of which involves Si–H bond cleavage, the corresponding reaction of Ph₃SiH results in the formation of the η^{6} -arene complex (η^{6} -C₆H₅SiPh₂H)Mo-(PMe₃)₃ (8).²⁸ Complexes that feature Ph₃SiH as an η^{6} -arene ligand are rare, with there being only one other structurally characterized example, namely (η^{6} -C₆H₅SiPh₂H)W(CO)₃,²⁹ listed in the Cambridge Structural Database.

In summary, $Mo(PMe_3)_6$ exhibits diverse reactivity towards SiH_4 , $PhSiH_3$, and Ph_2SiH_2 to afford a variety of novel silyl, hypervalent silyl, silane, and disilane complexes, whereas Ph_3SiH simply forms the η^6 -arene complex (η^6 - $C_6H_5SiPh_2H$)- $Mo(PMe_3)_3$. While the reactions of non-d⁰ metal phosphine hydride compounds are often interpreted in terms of sequences that involve oxidative addition and reductive elimination, NMR spectroscopic analysis of the isotope exchange reaction between $Mo(PMe_3)_4(SiH_3)_2H_2$ and SiD_4 indicates that the reaction does not occur via initial reductive elimination of SiH_4 , but rather by a metathesis pathway.

ASSOCIATED CONTENT

S Supporting Information

Experimental details, crystallographic data for compounds 1-8 (CIFs), and Cartesian coordinates for geometry optimized structures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

parkin@columbia.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-93ER14339) for support of this research. Aaron Sattler and Kaylyn Shen are thanked for helpful contributions.

REFERENCES

(1) (a) Corey, J. Y. Chem. Rev. 2011, 111, 863–1071. (b) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175–292.

(2) (a) Kim, B.-H.; Woo, H.-G. Adv. Organomet. Chem. 2005, 52, 143–174. (b) Roy, A. K. Adv. Organomet. Chem. 2008, 55, 1–59.
(c) Troegel, D.; Stohrer, J. Coord. Chem. Rev. 2011, 255, 1440–1459.
(d) Corey, J. Y. Adv. Organomet. Chem. 2004, 51, 1–52. (e) Waterman, R. Chem. Soc. Rev. 2013, 42, 5629–5641.

(3) Luo, X.-L.; Kubas, G. J.; Burns, C. J.; Bryan, J. C.; Unkefer, C. J. J. Am. Chem. Soc. 1995, 117, 1159–1160.

(4) (a) Vincent, J. L.; Luo, S.; Scott, B. L.; Butcher, R.; Unkefer, C. J.; Burns, C. J.; Kubas, G. J.; Lledós, A.; Maseras, F.; Tomàs, J. Organometallics **2003**, 22, 5307–5323. (b) Luo, X.-L.; Kubas, G. J.; Bryan, J. C.; Burns, C. J.; Unkefer, C. J. J. Am. Chem. Soc. **1994**, 116, 10312–10313.

(5) (a) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; van Asselt, A.; Bercaw, J. E. J. Mol. Catal. **1987**, 41, 21–39. (b) Green, M. L. H.; Parkin, G.; Chen, M.; Prout, K. J. Chem. Soc., Dalton Trans. **1986**, 2227–2236. (c) Jiang, Q.; Carroll, P. J.; Berry, D. H. Organometallics **1991**, 10, 3648–3655. (d) Hao, L.; Lebuis, A.-M.; Harrod, J. F. Chem. Commun. **1998**, 1089–1090. (e) Ebsworth, E. A. V.; Fraser, T. E.; Henderson, S. G.; Leitch, D. M.; Rankin, D. W. H. J. Chem. Soc., Dalton Trans. **1981**, 1010–1018.

(6) (a) Murphy, V. J.; Parkin, G. J. Am. Chem. Soc. **1995**, 117, 3522–3528. (b) Brookhart, M.; Cox, K.; Cloke, F. G. N.; Green, J. C.; Green, M. L. H.; Hare, P. M.; Bashkin, J.; Derome, A. E.; Grebenik, P. D. J. Chem. Soc., Dalton Trans. **1985**, 423–433.

(7) (a) Sattler, A.; Janak, K. E.; Parkin, G. *Inorg. Chim. Acta* 2011, 369, 197–202. (b) Hascall, T.; Murphy, V. J.; Janak, K. E.; Parkin, G. *J. Organomet. Chem.* 2002, 652, 37–49.

(8) The equilibrium constant for the reaction of $Mo(PMe_3)_4$ - $(SiH_3)_2H_2$ with H_2 is 1.0(1) at room temperature, from which it may be estimated that the Mo–H BDE is *ca*. 7 kcal mol⁻¹ greater than that for the Mo–SiH₃ bond.

(9) A mechanism that involves PMe₃ loss and α -H elimination to form a silylene species, H₃[Mo](SiH₂)(SiH₃), that adds SiD₄ to form H₃[Mo](SiH₂D)(SiH₃)(SiD₃), would result in a mixture of isotopologues, namely SiH₄, SiH₃D, and SiHD₃. However, since SiH₄ is not observed, this is not considered to be a likely mechanism.

(10) We note that the transition state for the metathesis reaction may be viewed as a hypervalent silyl derivative. Such derivatives are precedented, as illustrated by $Mo(PMe_3)_4(\kappa^2-H_2-H_2SiPh_2H)H$, described herein.

(11) A mechanism that involves α -H elimination can also be invoked to account for H/D exchange,^{*a*} but we favor a σ -complex intermediate on the basis that it does not require a vacant coordination site and that the interconversion of silyl-hydride and σ -complexes is precedented.^{*b*} Furthermore, H/D exchange between methyl and hydride sites has also been invoked to occur via σ -complex intermediates.^{*cd*} (a) Minato, M.; Zhou, D.-Y.; Zhang, L.-B.; Hirabayashi, R.; Kakeya, M.; Matsumoto, T.; Harakawa, A.; Kikutsuji, G.; Ito, T. *Organometallics* **2005**, *24*, 3434–3441. (b) References 3 and 4. (c) Parkin, G. *Acc. Chem. Res.* **2009**, *42*, 315–325. (d) Hall, C.; Perutz, R. N. *Chem. Rev.* **1996**, *96*, 3125–3146.

(12) There are, however, a few examples of the formation of bridging μ -SiH₃ compounds from PhSiH₃ for the f-block metals. See, for example: (a) Castillo, I.; Tilley, T. D. *Organometallics* **2000**, *19*, 4733–4739. (b) Radu, N. S.; Hollander, F. J.; Tilley, T. D.; Rheingold, A. L. Chem. Commun. **1996**, 2459–2460. (c) Korobkov, I.; Gambarotta, S. *Organometallics* **2009**, *28*, 5560–5567.

(13) Terminal silyl (SiH₃) compounds have also been isolated by redistribution of other silanes. See, for example: (a) Woo, H.-G.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 5698-5707.
(b) Li, Y.-H.; Huang, Z.-F.; Li, X.-A.; Lai, W.-Y.; Wang, L.-H.; Ye, S.-H.; Cui, L.-F.; Wang, S. J. Organomet. Chem. 2014, 749, 246-250.

(14) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46, 2578-2592.

(15) Castillo, I.; Tilley, T. D. J. Am. Chem. Soc. 2001, 123, 10526-10534.

(16) See, for example: (a) Sadow, A. D.; Tilley, T. D. Organometallics **2001**, *20*, 4457–4459. (b) Sadow, A. D.; Tilley, T. D. Organometallics **2003**, *22*, 3577–3585.

(17) Perrin, L.; Maron, L.; Eisenstein, O.; Tilley, T. D. Organometallics 2009, 28, 3767–3775.

(18) The κ^{x} notation refers to the number of Si–H hydrogen atoms attached to the metal. See: Green, J. C.; Green, M. L. H.; Parkin, G. *Chem. Commun.* **2012**, *48*, 11481–11503.

(19) $Mo(PMe_3)_4H_4$ and Ph_2SiH_2 are also formed.

(20) (a) Lin, Z. Chem. Soc. Rev. 2002, 31, 239–245. (b) Nikonov, G. I. Adv. Organomet. Chem. 2005, 53, 217–309. (c) Lachaize, S.; Sabo-Etienne, S. Eur. J. Inorg. Chem. 2006, 2115–2127.

(21) While the solid state structure of Mo(PMe₃)₃(σ -HSiHPh₂)H₄ is best described as a σ -complex, the observation of two quartets in the ¹H NMR spectrum at δ 6.48 (³J_{P-H} = 8 Hz) and -4.21 (²J_{P-H} = 30 Hz), attributable to a terminal silicon hydride and five hydrogen atoms attached to molybdenum, suggests that the molecule is either fluxional or exists as the silyl tautomer, Mo(PMe₃)₃(SiHPh₂)H₅, in solution.

(22) For comparison, there is only one other related compound listed in the Cambridge Structural Database that contains the $[H_2SiPh_2H]$ moiety, namely $Cp^*W(CO)_2(SiHPh_2)H_2$, but the much longer Si…H distances [1.92 Å and 2.00 Å] indicate that it is better

classified as a silyl-dihydride. See: Sakaba, H.; Hirata, T.; Kabuto, C.; Kabuto, K. *Organometallics* **2006**, *25*, 5145–5150.

(23) (a) Luo, X.-L.; Baudry, D.; Boydell, P.; Charpin, P.; Nierlich, M.; Ephritikhine, M.; Crabtree, R. H. Inorg. Chem. 1990, 29, 1511–1517. (b) Mautz, J.; Heinze, K.; Wadepohl, H.; Huttner, G. Eur. J. Inorg. Chem. 2008, 1413–1422. (c) Hussein, K.; Marsden, C. J.; Barthelat, J.-C.; Rodriguez, V.; Conejero, S.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B. Chem. Commun. 1999, 1315–1316. (d) Lee, T. Y.; Dang, L.; Zhou, Z.; Yeung, C. H.; Lin, Z.; Lau, C. P. Eur. J. Inorg. Chem. 2010, 5675–5684.

(24) (a) Gutsulyak, D. V.; Kuzmina, L. G.; Howard, J. A. K.;
Vyboishchikov, S. F.; Nikonov, G. I. J. Am. Chem. Soc. 2008, 130, 3732–3733. (b) Jagirdar, B. R.; Palmer, R.; Klabunde, K. J.;
Radonovich, L. J. Inorg. Chem. 1995, 34, 278–283.

(25) Nikonov, G. I. J. Organomet. Chem. 2001, 635, 24-36.

(26) (a) Ray, M.; Nakao, Y.; Sato, H.; Sakaki, S.; Watanabe, T.; Hashimoto, H.; Tobita, H. Organometallics 2010, 29, 6267–6281.
(b) Lachaize, S.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B. Chem. Commun. 2003, 214–215.

(27) It is also pertinent to note that, as observed for Mo(PMe₃)₃(σ -HSiHPh₂)H₄ [2.500(1) Å], the Mo–Si distance in Mo(PMe₃)₄(κ ²-H₂-H₂SiPh₂H)H [2.5408(7) Å] is slightly shorter than that in the silyl derivatives (2.56–2.58 Å), which indicates that a M–Si bond length does not necessarily correlate with the degree of activation of a Si–H bond.

(28) Ph_4Si does not, however, react with $Mo(PMe_3)_6$ under similar conditions.

(29) Gadek, A.; Kochel, A.; Szymańska-Buzar, T. J. Organomet. Chem. 2005, 690, 685–690.